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ABSTRACT in digit detection (which is 5X more significant than the ran-

Eavesdropping from the user’s smartphone is a well-known
threat to the user’s safety and privacy. Existing studies show
that loudspeaker reverberation can inject speech into mo-
tion sensor readings, leading to speech eavesdropping. While
more devastating attacks on ear speakers, which produce
much smaller scale vibrations, were believed impossible
to eavesdrop with zero-permission motion sensors. In this
work, we revisit this important line of reach. We explore
recent trends in smartphone manufacturers that include ex-
tra/powerful speakers in place of small ear speakers, and
demonstrate the feasibility of using motion sensors to cap-
ture such tiny speech vibrations. We investigate the impacts
of these new ear speakers on built-in motion sensors and
examine the potential to elicit private speech information
from the minute vibrations. Our designed system EarSpy
can successfully detect word regions, time, and frequency
domain features and generate a spectrogram for each word
region. We train and test the extracted data using classical
machine learning algorithms and convolutional neural net-
works. We found up to 98.66% accuracy in gender detection,
92.6% detection in speaker detection, and 56.42% detection
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dom selection (10%)). Our result unveils the potential threat
of eavesdropping on phone conversations from ear speakers
using motion sensors.
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1 INTRODUCTION

Eavesdropping on smartphones is always a well-known
threat and a major security concern for users. Call record-
ing is the most straightforward approach for an adversary
to eavesdrop. However, smartphone operating systems are
imposing restrictions on third-party apps for recording calls
using microphones [3, 12], which thwarts most attacks rely-
ing on microphone access.

A possible workaround for adversaries can be extracting
speech information from zero-permission motion sensors
through a side-channel attack. It is a significant privacy con-
cern that users are unaware of [7] but have been extensively
investigated by researchers in the last decade. Researchers
have reported potential eavesdropping prospects using mo-
tion sensors [1, 4, 13], keystrokes on touchscreens [35], stylus
pen writing [18] and using external devices [5, 28]. Further-
more, eavesdropping through light sensors [6], gyroscope
[19] are also reported in the literature.
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Figure 1: Overview of ear speaker eavesdropping.

Among the built-in sensors of smartphones, motion sen-
sors are mostly known as vulnerable to eavesdropping. Ad-
versaries leverage motion sensors to collect audio (e.g., voice
conversation [4]), touch screen inputs [34], and even indoor
locations [37]. Eavesdropping through motion sensors is
straightforward, as adversaries do not need explicit permis-
sion to collect raw data from them.

An abundant amount of work has been done on eaves-
dropping attacks induced by vibration generated from phone
loudspeakers (e.g., [1, 4]). However, very few works have
been done on eavesdropping ear speakers, a built-in internal
speaker in a smartphone that is used to listen to the conver-
sation while the phone is held to the ear. Eavesdropping on
the ear speaker is the most practical attack vector that can
eavesdrop on phone conversations, as most people are not
willing to expose sensitive speech, especially in public places.
A few recent studies [5, 28] show that the vibrations pro-
duced by ear speakers can be captured using high-resolution
wireless sensors placed close to the victim.

A natural question is that: Is it possible to eavesdrop on
ear speakers using built-in motion sensors? Such an attack
setting is highly practical due to the zero-permission prop-
erty of motion sensors, which does not require placing or
hacking any devices in the victim’s environment. Previous
studies did not find enough impact of ear speakers on the
accelerometer (e.g., Figure 10 of [1]). However, we find that
the audio quality of smartphone speakers continues to im-
prove and evolve [10]. Following the trend, recent flagship
smartphones contain stereo speakers, which requires placing
two speakers at the top and bottom. In most cases, traditional
small ear speakers are replaced by more prominent stereo
speakers. As a result, phones with stereo speakers produce
more sound pressure during conversations than phones with
conventional ear speakers. In Figure 2, a comparative spec-
trogram analysis of two smartphones (Oneplus 7T contains
stereo speakers, whereas OnePlus 3T does not) presents a
noticeable difference in its vibration effect in a motion sensor
(i.e., accelerometer) while playing a recording of the word
“Zero" six times in five seconds interval. Figure 2a shows a

spectrogram demonstrating the very low impact of ear speak-
ers in the accelerometer in an older model phone (OnePlus
3T) where stereo speakers were not present. Figure 2b shows
some impact on the accelerometer due to vibration induced
by ear speakers of a newer model smartphone (i.e., OnePlus
7T) compared to Figure 2a. Figure 2c shows the spectrogram
for loudspeakers of the OnePlus 7T with a clear view of word
regions.

Based on these observations, we propose to analyze the
accelerometer data and try to extract sensitive speech and
speaker information from a speech played on ear audio. Al-
though phone manufacturers use a larger and more pow-
erful speaker at the top in place of ear speakers, during a
phone conversation, the volume is controlled at a level so
that users do not experience any discomfort. We use public
speech datasets (e.g., Free Speech Data Set [14], JL-Corpus
[17], emo-DB [11]) in our experiment, and our word region
detection program can still detect more than 50% of “word
region" from the raw accelerometer data. We extract time
and frequency domain features, generate spectrograms, and
use classical machine learning algorithms and deep learning
techniques to examine if they can detect speech information
(e.g., words, speakers, gender) from accelerometer data. Our
analysis reveals that an adversary can successfully reveal
Gender, Speaker, and speech information with reasonable ac-
curacy (98% for Gender detection, 92% for speaker detection).
An overview of the system is illustrated in Figure 1.

Our Contribution: We analyze the effect of vibration in-

duced by ear speakers during a conversation, extract time-
frequency domain features, and generate a spectrogram for
each identified word region. We use classical machine learn-
ing and deep learning techniques to identify the speech,
speaker, and gender of the caller by analyzing the features.
Our contribution to this work is three-fold:

(1) Exploration of Eavesdropping Opportunity on Ear
Speaker using Built-in Motion Sensors: Eavesdrop-
ping from ear speakers is one of the most real-world
and practical threats. Researchers have already ex-
plored this area [5, 28] in the previous literature that
uses external radars/devices outside of the smartphone
device. However, to the best of our knowledge, EarSpy
is the first work that explores the eavesdropping oppor-
tunity on ear speakers using built-in motion sensors
of recent smartphones with stereo speakers.

(2) Extraction of Word Regions and Features from Ac-
celerometer Data: Although we observe a little impact
of ear speaker-induced vibration in accelerometer data,
we are able to identify more than 45% word regions to
analyze. We also extract time and frequency domain
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Figure 2: Spectrogram generated while playing word “Zero" for six times.

features and generate a spectrogram for each identi-
fied word region. We use these features and spectro-
grams to feed into classical machine learning and deep
learning techniques to further analyze the accuracy of
speech, speaker, and gender detection.

(3) Achieved Reasonable Accuracy in Detecting
Speech and Speaker Specific Information: We
achieve high accuracy in detecting speech (56%
accuracy) and speaker information (i.e., speaker (92%
accuracy) and gender identification (98% accuracy)).
Compared to audio and vibration domain (using
loudspeaker) performance, this result is promising and
reveals the real-world threat of voice conversation
eavesdropping.

2 BACKGROUND

Ear Speakers on Smartphone. Ear speakers are designed
to produce low-volume sound during phone conversation
where the user places the phone against his ear in order to
clearly hear the sound from the ear speakers. Fig 3 depicts
the layouts of ear speakers on a typical phone model (i.e.,
Oneplus 7T). Specifically, the speaker at the bottom is typ-
ically the loudspeaker. The ear speakers of a smartphone
is mounted on the top area of the smartphone’s mother-
board. Since the vibrations generated by the ear speaker are
much weaker than the loudspeaker, therefore, a direct con-
tact between the ear speaker and the user’s ear is ideal for
high-quality sound reception. The main reason why it helps
is that sounds propagating among two solid surfaces (i.e., ear
speaker and ears) are much better than no physical contact
case (i.e., air as the intermediate medium).

Vibration Captured by Motion Sensor on Smartphone.
Modern smartphones are equipped with highly sensitive mo-
tion sensors (i.e., accelerometer and gyroscope) that are de-
signed for sensing phone vibrations. Existing studies [2, 26]

Speaker

Figure 3: Teardown snapshot [16] of OnePlus 7T.

have shown that the vibration of the phone body caused
by the transmitted sound from the built-in speaker can be
captured by the motion sensor. The basic principle is that the
sound transmitted through the smartphone’s body generates
vibrations, and the motion sensor on that smartphone can
capture those vibrations. More specifically, Spearphone [2]
found that the accelerometer on the smartphone has a strong
response to the sound frequency from 100Hz to 3300Hz.
Moreover, they observed that sounds at different frequen-
cies generate responses at the low-frequency points of the
accelerometer, known as aliased signals. And it can be ex-
pressed using the equation as follows: f; = |f - N - f,
where f; is the vibration frequency of the accelerometer,
f is the sound frequency, f; is the accelerometer sampling
rate, and N can be any integer. This effect shows that the
accelerometer can capture rich information in low-frequency
aliasing signals since they are derived from the original
sound at different frequencies. In addition, they also com-
pared the frequency response of both accelerometers and
gyroscopes and found that the accelerometer’s response was
stronger than the gyroscope’s response in the frequency
range 100Hz to 3300Hz. Therefore, we only adopt accelerom-
eters in our experiments as well.



3 RELATED WORK

Direct speech sensing on external loudspeak-
ers/human throats. Many research investigations
have extended the search for speech eavesdropping from
using a tampered/hidden microphone to radio frequency
(RF) sensors, such as WiFi [29, 31], Ultra-Wideband [30],
and mmWave signals [33]. For example, researchers have
explored using WiFi signals to recover the sound of
speaker devices [31] and capture mouth motions [29] for
speech eavesdropping. These attacks rely on external and
potentially customized/dedicated sensing devices around
the human subjects for sensing, rendering these attacks
cumbersome and less stealthy.

Indirect speech sensing based on vibrations. Speech
eavesdropping is also shown feasible through sensing sound-
induced vibrations using various types of sensors [8, 19, 20,
27, 36]. Gyrophone [19] first showcased the attack setup
where a smartphone is placed on the same solid surface as a
loudspeaker. The smartphone’s gyroscope is then used to cap-
ture the surface vibrations induced by the speech playbacks
of the loudspeaker. Recent studies further demonstrate the
feasibility of such attacks through vibration sensing using
lasers, high-speed cameras, and light sensors. For example,
Davis et al. [8] utilizes a high-speed camera to capture video
streams to recover vibrations from some room objects (e.g.,
a bag of chips). Nassi et al. [21] show that sound vibrations
on lamps can be detected and recovered by using electro-
optical sensors. These attacks are promising, but they require
a loud sound volume of the loudspeaker (e.g., 70~110dB) or
a close distance between the vibration surface and the loud-
speaker to trigger surface vibrations. Differently, this work
targets more realistic attack scenarios, where the sounds
with a low sound volume of around 50dB are produced by
the ear speaker of smartphones. Compared to these existing
approaches, our attack is also more resilient to impacts of en-
vironments, such as the occlusion by walls and movements
of nearby human subjects.

Speech eavesdropping on smartphone speaker. Instead
of using external sensors, Spearphone [1] and AccelEve [4]
recently demonstrated new eavesdropping attacks which
derive speech based on the motion sensors on the same
smartphone. The vibrations produced by the speaker can
propagate through the motherboard and reach the motion
sensors. With the motherboard as the vibration medium, it is
more stable for the motion sensors to pick up speech vibra-
tions. AccEar [13] takes one step forward to design a deep
neural network to reconstruct audio signals from the motion
sensor readings. The attacks show promising results, but
they assume the sounds are relayed by built-in loudspeaker,
which is audible to nearby people and is less likely to use for

phone calls in public spaces (e.g., offices, conferences). Differ-
ent from these prior works, our attack targets minute speech
playback by an ear speakers, which is completely inaudible
to nearby human subjects. Our attack is more devastating
as users normally believe the confidentiality of the speeches
played via ear speakers (e.g., one-time passwords, birthdays,
and social security card numbers) has been enforced.

4 DESIGN AND IMPLEMENTATION

We design a system that uses motion sensor data from the
user’s smartphone induced by ear speaker vibrations. Our
goal is to examine if the ear speakers cause distinguishable
vibration patterns on motion sensor data. This section dis-
cusses the system design and tools used for the experiment
in detail.

4.1 Feasibility Determination

Playing Voice Through Ear Speakers: We have used
some third-party Android apps (Ear [23], Mobile Ear Speaker
Earphone [25]) to play audio only through the ear speakers.
We have used available, and widely known voice data sets
(e.g., JL-Corpus [17]), FSDD [14], Emo-DB [11]) and played
the audio through ear speakers.

Impact of Powerful Ear Speakers of Smartphone: Ear
speakers are designed to produce low-volume sound during
a phone conversation. The volume level is set to an optimum
level so that it can be comfortable to hear during a conver-
sation in the handheld position. Smartphone speakers are
evolving fast in the last decade [10], and the recent trend
is to introduce stereo speakers with smartphones. Gener-
ally, stereo speakers are two speakers built into the top and
bottom portions of phones. As such, manufacturers are de-
signing phones with better quality speakers at the top, which
is also used as ear speaker during phone conversations.

Although some phone manufacturers claim that their
phone has stereo speakers, their designed top speakers are
not as powerful as the bottom primary loudspeaker. We have
analyzed some publicly available teardown videos [15, 16]
and noticed some phone manufacturers use larger multiple
speakers at the top to boost the audio quality (e.g., OnePlus
7T teardown at Figure 3) whereas others use smaller speak-
ers (e.g., Google Pixel 5 [15]). Smartphone with larger and
multiple speakers is more likely to generate more vibration
than smaller ones.

To test this hypothesis, we play a recorded word “Zero"
six times in five second interval through ear speakers of a
smartphone where large dual speakers are used (e.g., OnePlus
7T) and collect accelerometer readings. We extract the word
region and generate a spectrogram for it. We did the same
experiment with another phone with less powerful speakers
(OnePlus 3T). From the generated spectrogram (Figure 2a,



and Figure 2b), it is evident that audio played with a larger
and improved speaker will cause distinguishable vibration,
unlike previous phones.

Choosing Accelerometer to Collect Vibration Data: We
have already learned from previous literature [1] that the
accelerometer performs better than a gyroscope to capture
the vibration from the smartphone’s internal speakers. So,
in our experiments, we primarily focused on capturing ac-
celerometer data.
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(a) Example of identified word regions from acceleromter data after
applying 8Hz high-pass filter on loudspeaker.
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(b) Example of identified word regions from accelerometer data after
applying 8Hz high-pass filter on ear speaker.

Figure 4: Comparison of identified word regions from the loud-
speaker and ear speaker setting.

4.2 Word Region Identification

As we discussed earlier, we play speech audio using publicly
available speech datasets and collect the vibration data from
the accelerometer. We place the phone in the handheld po-
sition (i.e., the natural posture of a human during a phone
conversation). As a result, body and hand movements add
low-frequency noises to the accelerometer data. We place a
high-pass filter during our analyses to eliminate the effect
of low-frequency body and hand movement.

Ear audio creates a very small impact on the accelerometer.
So, if we set a larger value as a high-pass filter cutoff fre-
quency, important speech features will be lost. Zhang et el.,
in their work accelWord [36], also observed this challenge
and did an information gain analysis to determine the opti-
mum value. According to their analysis, if the cutoff value is
greater than 2 Hz, then information gained with frequency
domain features will reduce significantly. We did the infor-
mation gain analysis on ear speaker data and found that even

a value equal to or less than 1 Hz causes a significant amount
of missing information. We collected all data from a single
dataset in one go to avoid noise bias.

After that, we analyze the vibration of speech generated
in raw accelerometer data. In previous literature, [1, 26], au-
thors claimed that they found the most impact of vibrations
are generated by phone speakers along the Z-axis. As we are
working with ear speakers, we measure the impact of tiny vi-
brations along the X, Y, and Z axis. We observe that variance
along the X, Y, and Z axis as 1.7029 * 1076, 1.7029 = 1076,
and 1.946 « 10~ Tt is obvious that this observation is in line
with the observation of previous literature, which implies
the Z axis gets more impact of vibrations compared to the X
and Y axis.

We developed a program in MATLAB to analyze the ac-
celerometer data and detect the word region. When a speech
is played on the ear speakers, spikes can be noticed in the
Z-axis value of the accelerometer. We present accelerome-
ter data when the word “Zero" is uttered six times within 5
seconds timeframe in Figure 4 for the loudspeaker and ear
speaker scenario. As the loudspeaker has a larger impact on
accelerometer data, all individual word regions are visible
(Figure 4a) and easy to detect. In contrast, ear speaker has a
lower impact on accelerometer data (4b) and hence are hard
to detect. In our presented example of Figure 4, where all six
word regions are visible for the loudspeaker, only four word
regions can be distinguished for the ear speaker. We observe
that our program can automatically detect at least 45% of
word regions from the raw accelerometer data and calculate
time and frequency domain features (detailed discussion in
the following subsection).

4.3 Tools Used for This Study

As we have discussed before, our primary goal is to analyze
the accelerometer data while playing audio from ear speak-
ers. For this experiment, we choose smartphones that have
powerful/ multiple ear speakers. We have used OnePlus 7T
and the OnePlus 9, which meet the requirements.

Both phones used for testing run on Android (Oneplus 7T
runs on Android 11 while Oneplus 9 runs on Android 12).
We have used a third-party Android app Mobile Ear Speaker
Earphone [25] that runs a service that redirects all the output
audio through ear speakers with default volume. We have
also used another third-party app Physics Toolbox Sensor Suite
[24] to collect accelerometer data while audio from datasets
is played.

We have used a MATLAB program to analyze the ac-
celerometer data and extract time and frequency domain
features. To train the time and frequency features of data,
we used Weka [32], which provides a collection of machine
learning algorithms and essential analysis tools. We have



Table 1: Time and frequency domain features.

Time Domain Features Frequency Domain

Features

minfreq, maxfreq, meanfreq, | Energy, Entropy, Frequency
standard deviation, variance, Ratio, Irregularity K,
range, CV, skewness, kur-| Irregularity J, sharpness,
tosis, quantile25, quantile50, | smoothness, specCentroid,
quantile85, maeanCrossin- specStdDev, specCrest,
gRate specSkewness, specKurt
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Figure 5: CNN model used for spectrogram-based image classifier.

also designed a Convolutional Neural Network (CNN) to
analyze time and frequency domain data.

Using our developed MATLAB program, we also gener-
ate a spectrogram for each word region. We have also de-
signed a CNN-based image classifier that can be fed with the
generated spectrograms and classify them to detect gender,
speaker, and speech.

4.4 Time-Frequency Domain Feature
Analysis

We extracted time and frequency domain features using
our developed MATLAB program. We use these features to
train classical machine-learning algorithms using Weka. Ini-
tially, we checked with 40 different classifiers and found Ran-
domForest, RandomSubspace, and DecisionTables are showing
better performance than others. We use 80%/20% train/test
split and 10-Fold cross-validation. We also use these time-
frequency domain features to train our developed CNN
model, and there we have also used 80%/20% train/test splits.
The time-frequency domain features we have used for this
experiment are listed in Table 1.

4.5 CNN Model Details

4.5.1 Spectrogram-based Image Classifier. We use an
image classifier for spectrogram analysis to take spectrogram
inputs and then classify them.

Pre-processing: We prepare training and testing data from
the generated labeled spectrograms as a Hierarchical Data
Format version 5 (HDF5) file. Afterward, we convert the
generated spectrogram into 128X128 images and prepare
training and testing data by attaching appropriate labels.

CNN Details: In our designed model, there are three con-
volutional layers followed by three fully connected lay-
ers shown in Figure 5. The first convolutional layer takes
128X128 images and contains 128 filters. The second and
third convolutional layer includes 128 and 64 filters, respec-
tively. Each convolutional layer is followed by a ReLU func-
tion, a dropout layer with 0.2 rates, and a max-pooling layer
(pool size (2X2)). After three convolution layers, we placed
three fully connected layers. The first two layers reduce
the size of the image to 128 and 64, respectively, with the
ReLU activation function. The third layer comes up with the
“softmax" activation function and changes the image size ac-
cording to class size. The detailed CNN model is illustrated in
Figure 5. We have used Root Mean Square Propagation (RM-
SProp) optimizer while training the model with spectrogram
images.

4.5.2 Time-frequency Domain Feature based CNN
Classifier. We collect time-frequency domain features,
write them into a CSV file and feed this data into our designed
CNN model that classifies based on the time-frequency do-
main features.

Pre-processing: Our developed MATLAB program calcu-
lates time-frequency domain features with the label for each
word region and generates a CSV file that contains all the
information. After importing the CSV file, we check if there
is any NaN (Not a Number) value on time and frequency
domain features.

CNN Details: In our designed time-frequency feature-based
classifier model, we use five convolutional layers followed
by one dense layer (with softmax activation function). The
first two convolutional layers contain 256 filters, the third
convolutional layer has 128 filters, and the fourth and fifth
one has 64 filters each. We have used dropout layers with a
rate of 0.25 in the second and third convolution layers. We
also used batch normalization in the second and third con-
volutional layers. Each of the convolutional layers used the
ReLU activation function. Finally, we used a fully connected
layer with a class size containing the softmax function. We
have used Root Mean Square Propagation (RMSProp) op-
timizer while training the model with time and frequency
domain features. An overview of the CNN model used for
this purpose is depicted in Figure 6.
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Analysis.

5 EVALUATION

In this section, we discuss details about our experiment setup,
dataset, and data collection methods. Most importantly, we
discuss how our designed system can extract speech prop-
erties (i.e., speech, gender, and speaker information) from
vibration induced by the ear speaker and evaluate the per-
formance.

5.1 Experiment Setup

Data Collection Method: We use the natural handheld po-
sition of smartphone users that they use during a phone
conversation in the experiment. As discussed earlier, we play
the audio from the selected dataset, and a third-party app
collects the accelerometer data at that time.

Dataset Selection: We use publicly available and well-
known datasets to evaluate if our designed system can iden-
tify the speech information from the vibration induced by
ear speakers. For gender and speaker detection, we use
JL-Corpus [17], and emo-DB [11] datasets. The JL-Corpus
dataset has 2400 utterances with four different speakers (two
males and two females), whereas the emo-DB dataset has
535 utterances with ten actors (five males and five females).
Actors use English in the JL-Corpus dataset and German in
the emo-DB dataset as utterance language. For speech recog-
nition, we use the digit dataset Free Spoken Digit Dataset [14]
with the utterance of six(6) actors. Each actor utters each
digit ten times (a total of 500 utterances per actor).

We have done a preliminary check on the datasets to ex-
amine the audio quality of the utterances. We have found
that, in the FSDD dataset, three of the actor’s data contain
too much background noise or inconsistent volume during
the recording. So, we removed these 1500 data and worked
with only the remaining 1500 data in FSDD datasets. We
have observed that data from emo-DB and JL-Corpus do
not have similar problems. In addition to that, as the ear
speakers produce low-volume audio output, the impact on

the accelerometer is minimal. So, our word region detection
program cannot identify all the word regions. However, it
can detect 45% to 90% data, which is reasonable considering
the low impact of vibration in the accelerometer.

Device Selection: As discussed earlier, our primary focus
is to determine if ear speakers of recent smartphones that
use stereo speaker feature and have powerful and multiple
speakers on top are generating enough vibration on the
motion sensor (i.e., accelerometer), so that, individual speech
features can be identified. So, we measure the sound pressure
level of each phone when they are playing the same audio
from the FSDD dataset. From our experiment, we observe
that only the OnePlus 7T and the OnePlus 9 generate greater
sound pressure than other phones (Oneplus 7T shows 42-46
dB, where OnePlus 9 shows 40-44 dB). So, we select these
two phones for further experiments.

Posture Selection: In this work, our primary goal is to eval-
uate the risk of voice conversation in the phone through ear
speakers. So, experiment data collectors keep their phones
in the natural handheld posture while collecting data. All
data are collected when data collectors sit on the chair. We
have collected accelerometer readings for the whole dataset
on one go to avoid human movement noise-induced bias on
different classes.

5.2 Data Collection Details

Audio File Preparation: We collect all dataset’s audio files
and sort them according to class in a folder so that it plays
one class after another. Before starting the data collection, we
played the audio file once to recheck if every audio file was
playing correctly and note down the time when the audio
file of a specific class was finished.

Tools Used in Data Collection: We have used Physics Tool-
box Sensor Suite to collect accelerometer data. The OnePlus
7T and the OnePlus 9 phones’ default sampling rates are 420
Hz and 520 Hz, respectively. We collect accelerometer data
using this sampling rate. We have exported the collected
data as a CSV file which is used for the MATLAB feature
extraction program’s input.

5.3 Feature Extraction

We have developed programs using MATLAB for time and
frequency domain feature extraction and spectrogram gen-
eration. The first program takes the accelerometer data CSV
file and detects each word region, and then extracts the time
and domain frequency feature of each word region. This
program writes and exports all time and frequency domain
features in an external file and labels the data according to
class. After that, we used Weka [32] to classify using classical
machine learning algorithms.
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Figure 7: Gender recognition training and validation accuracy graph
using different methods.

The Spectrogram generator (developed using MATLAB)
can also detect the word regions and generate spectrograms
for each word region. The generated spectrograms are la-
beled according to class. Later these generated spectrogram
is used to feed into our developed CNN for further analysis.

54 Gender Recognition

Gender Detection: We use JL-Corpus [17], and emo-DB
[11] dataset to evaluate if the caller’s gender can be detected
from the accelerometer data. We have used three methods
to evaluate: (1) Classical machine learning algorithm with
time and frequency domain features. (2) CNN with time and
frequency domain features (3) CNN with generated spectro-
gram for each word region.

ML Algorithm with Time/Frequency Domain Fea-
tures: For the emo-DB dataset, our detection program can
detect 448 word regions among 535 original utterances for
the OnePlus 7T and 300 word regions for OnePlus 9. We have
extracted all detected word regions’ time/frequency domain
features. We have used “RandomForest", “RandomSubspace”,
and “Decision Table" as classifiers for our analysis. We have
used 80/20 train/test split and 10-Fold cross-validation for
our analysis.

For RandomForest Classifier, we have achieved 98.66% ac-
curacy in classifying genders. Whereas for RandomSubspace,
we have also achieved 98.66% accuracy, and for Decision
Table, we have observed 98.21% accuracy for the OnePlus
7T. The detailed result is shown in Table 2 and Table 5. Simi-
larly, for the OnePlus 9, we get 88.67%, 77.71%, and 84.67%
accuracy for RandomForest, RandomSubspace, and Decision
Table classifiers, respectively. The detailed result is shown
in Table 2 and Table 6.

For the JL-Corpus dataset, our detection program can de-
tect 1469 word regions among 2400 utterances. Here, we also
have used RandomForest, RandomSubspace, and Decision
Tree as classifiers for our analysis.

For RandomForest Classifier, we have achieved 78.62% ac-
curacy in classifying genders. Whereas for RandomSubspace,
we have also achieved 79.37% accuracy, and for Decision
Table, we have observed 77.67% accuracy for the OnePlus
7T. Similarly, we got 77.71%, 74.20%, and 72.14% accuracy for
the OnePlus 9. The detailed result is shown in Table 2, Table
5, and Table 6.

CNN with Time/Frequency Domain Features: As dis-
cussed, we have extracted time and frequency domain fea-
tures for 448 word regions for emo-DB and 1469 word regions
for JL-Corpus datasets. We have designed a CNN to classify
time and frequency domain features (Details are described
in Section 4.5.2).

We have used binary_crossentroy as loss function and Root
Mean Square Propagation (RMSProp) as the optimizer and
80/20 split as train/test split in our analysis. We have achieved
95.55% for the emo-DB dataset and 75.71% accuracy for the
JL-Corpus dataset for the OnePlus 7T. We also got 83.33%
and 67.52% accuracy for the emo-DB and JL-Corpus datasets,
respectively, for the OnePlus 9 device. Training loss Vs. val-
idation loss and training accuracy Vs. validation accuracy
charts are shown in Figure 7.

CNN with Spectrogram: We generate spectrograms for
all word regions our algorithm has detected. We train our
developed CNN model with the extracted spectrograms. We
observed, at best 79.72% accuracy on analyzing, which is
also lower compared to what we get from classical machine
learning algorithms. We can see the loss and accuracy graph
in Figure 7d and Figure 7c. Details results on gender detection
are listed in Table 2.

5.5 Speaker Detection

We use JL-Corpus [17] and FSDD (Free Spoken Digit Dataset)
[14] dataset to evaluate if the speaker’s identity can be de-
tected from the accelerometer data. We use the same ML
algorithms and CNN classifiers that we have used in gender
detection.



Table 2: Gender recognition accuracy (random guess 50%).

Method Classifier Data set Accuracy Accuracy
(OnePlus 7T) (OnePlus 9)

Random Emo-DB 98.66% 88.67%

Forest JL-Corpus 78.62% 77.71%

Time and Random Emo-DB 98.66% 84.67%
Frequency Subspace JL-Corpus 79.37% 74.20%
Domain Decision Table Emo-DB 98.21% 84.67%
Features JL-Corpus 77.67% 72.14%
Emo-DB 95.55% 83.33%

CNN JL-Corpus 75.17% 67.52%

Emo-DB 79.72% 69.69%

Spectrogram | CNN JL-Corpus 70.10% 65.53%
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Figure 8: Speaker recognition training and validation accuracy
graph using different methods.

ML Algorithm with Time/Frequency Domain Fea-
tures: For the FSDD dataset, our detection program can
detect 788 word regions among 1500 (1500 data was removed
for inconsistent volume and background noise as discussed
earlier) original utterances with three different classes for
OnePlus 7T. For the OnePlus 9, the total number of extraction
is 618. We extract all detected word regions’ time/frequency
domain features and use RandomForest, RandomSubspace,
and Decision Tree as classifiers for our analysis. We use 80/20
train/test split and 10-Fold cross-validation similar to gender
detection.

For RandomForest Classifier and FSDD dataset, we have
achieved 91.24% accuracy in classifying genders for the One-
Plus 7T device and 87.75% for the OnePlus 9. Whereas for

RandomSubspace, we have also achieved 90.98% and 88.70%
accuracy for these devices. For Decision Table, we have ob-
served 90.22% accuracy for the OnePlus 7T and 88.23% accu-
racy for the OnePlus 9. The detailed result is shown in Table
3, Table 5, and Table 6.

Like previous analysis, for the JL-Corpus dataset, our de-
tection program can detect 1469 word regions among 2400
utterances with four different classes. Here, we also have
used the same classifiers to evaluate our results.

For RandomForest Classifier, we have achieved 64.60%
and 61.50% accuracy in classifying genders for OnePlus 7T
and OnePlus 9. Whereas for RandomSubspace, we have also
achieved 64.32% and 59.86% accuracy, and for Decision Table,
we have observed 63.03% and 55.72% accuracy for the One-
Plus 7T and OnePlus 9 devices, respectively. The detailed
result is shown in Table 3, Table 5, and Table 6.

CNN with Time/Frequency Domain Features: As dis-
cussed, we have extracted time and frequency domain fea-
tures for 788 word regions with three different speakers for
FSDD and 1469 word regions with four different speakers
for JL-Corpus datasets. Our designed CNN is the same that
we have used in gender detection.

We have used categorical_crossentroy as the loss function
and Root Mean Square Propagation (RMSProp) as the optimizer
and 80/20 split as the train/test split in our analysis. We have
achieved 86.07% and 78.12% for the FSDD dataset and 60.20%
and 57.73% accuracy for the JL-Corpus dataset for OnePlus 7T
and OnePlus 9 devices. Training loss Vs. validation loss and
training accuracy Vs. validation accuracy charts are shown
in Figure 8.

CNN with Spectrogram: We generate spectrograms for all
identified word regions and label them accordingly. After
that, we fed generated spectrogram to our designed CNN-
based image classifier. We collect data from two datasets
(FSDD and JL-Corpus), and the CNN-based image classifier
shows up to 45.23% accuracy for the JL-Corpus dataset. We
observe that accuracy is much lower than in classical ma-
chine learning algorithms. Loss and accuracy analysis are
illustrated in Figure 8d and Figure 8c.
Details results on gender detection are listed in Table 3.

5.6 Speech Recognition

As a representative speech recognition dataset, we used the
FSDD (Free Spoken Digit Dataset) [14] dataset containing
audio records of three different actors uttering digits 0 (zero)
to 9 (nine). We evaluate the impacts on the accelerometer and
try to find out if every digit can be distinguished using raw
accelerometer data. We have used the same ML algorithms
and CNN classifiers that we have used in gender detection.

ML Algorithm with Time/Frequency Domain Fea-
tures: For the FSDD dataset, our detection program can



Table 3: Speaker recognition accuracy.

Table 4: Speech recognition accuracy (random guess 10%).

Method Classifier Data set Accuracy Accuracy Method Classifier Data set Accuracy Accuracy
(Random (Random (OnePlus (OnePlus 9)
Guess) Guess) 7T)
(OnePlus 7T) (OnePlus 9) Time and Random FSDD 53.59% 41.59%
Random FSDD 91.24% (33%) 87.75% (33%) Frequency Regdgm Subspace| FSDD 56.42% 38.99%
Forest JL-Corpus 64.60% (25%) 61.50% (25%) Domain Decision Table FSDD 51.80% 33.33%
Time and Random FSDD 90.98% (33%) 88.70% (33%) Features CNN FSDD 41.02% 38.70%
Frequency Subspace JL-Corpus 64.32% (25%) 59.86% (25%)
Domain Decision Table |__FSDD 90.22% (33%) 88.23% (33%)
Features JL-Corpus 63.03% (25%) 55.72% (25%) . L. . .
NN FSDD 86.07% (33%) 78.12% (33%) and OnePlus 9 devices. Training loss Vs. validation loss and
JL-Corpus | 60.20% (25%) | 57.73% (25%) training accuracy Vs. validation accuracy charts are shown
Soectrozram | CNN FSDD 35% (33%) 36.44% (33%) -
pectrog JL-Corpus | 44.32% (25%) | 45.23% (25%) in Figure 9.
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(b) Speech recognition training
accuracy Vs. validation accu-
racy for FSDD dataset (time-
frequency feature analysis).

(a) Speech recognition training
loss Vs. validation loss for FSDD
dataset (time-frequency feature
analysis).

Figure 9: Speech recognition training and validation accuracy graph
using CNN with time-frequency features.

detect 788 (OnePlus 7T)and 630 (OnePlus 9) word regions
among 1500 (1500 data was removed for inconsistent vol-
ume and background noise as discussed earlier) original
utterances with ten different classes. We have extracted all
detected word regions’ time/frequency domain features. We
have used RandomForest, RandomSubspace, and Decision
Tree as classifiers for our analysis, similar to gender and
speaker analysis. We also use 80/20 train/test split and 10-
Fold cross-validation similar to the previous analysis.

For RandomForest Classifier, we have achieved 54.46% ac-
curacy in classifying genders. Whereas for RandomSubspace,
we have also achieved 54.46% accuracy, and for Decision
Table, we have observed 45.53% accuracy for the OnePlus
7T.

CNN with Time/Frequency Domain Features: As dis-
cussed, we have extracted time and frequency domain fea-
tures for word regions extracted for both phones with ten
different speakers for FSDD. Our designed CNN is the same
that we have used in gender and speaker detection.

Similar to speaker analysis, we have used categori-
cal_crossentroy as the loss function and Root Mean Square
Propagation (RMSProp) as the optimizer and 80/20 split as
the train/test split in our analysis. We have achieved 41.02%
and 38.70% accuracy for the CNN analysis for OnePlus 7T
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The detailed result is shown in Table 4, Table 5, and Table

5.7 Result Summary

Table 5: Detection performance of ML algorithm with
time/frequency domain features for OnePlus 7T device.

Detection| Classifier Data set TP FP Precision| Recall
Rate Rate
Random emo-DB 98.7% 1.3% 98.7% 98.7%
Forest JL-Corpus 78.6% 21.7% 78.8% 78.6%
Gender Random emo-DB 98.7% 1.3% 98.7% 98.7%
Subspace JL-Corpus 79.4% 21.0% 79.8% 79.4%
Decision emo-DB 98.2% 1.9% 98.2% 98.2%
Table JL-Corpus | 77.7% | 22.5% 77.7% 77.7%
Random FSDD 91.2% 4.6% 91.4% 91.2%
Forest JL-Corpus 64.6% 11.6% 66.3% 64.6%
Random FSDD 91.0% 4.7% 91.5% 91.0%
Speaker
Subspace JL-Corpus 64.3% 11.5% 67.5% 64.3%
Decision FSDD 90.2% 5.1% 90.4% 90.2%
Table JL-Corpus 63.0% 11.9% 66.9% 63.0%
Random FSDD 53.6% 5.1% 52.2% 53.6%
Speech Forest
Random FSDD 56.4% 4.8% 55.3% 56.4%
Subspace
Decision FSDD 51.8% 5.4% 50.9% 51.8%
Table

Gender Detection: After evaluation with two different
datasets and three different methods, we found reasonable
accuracy with the highest achieved accuracy of 98.6% in
classical ML algorithm analysis for emo-DB datasets, which
contains 10 different actors (5 male actors, 5 female actors).
We have also evaluated with JL-Corpus dataset that contains
2400 utterances (we extracted 1469 word regions). JL-Corpus
utterances are collected from 4 speakers (2 males and 2 fe-
males). We have achieved 79.37% accuracy on the JL-Corpus
dataset using the classical ML algorithm in gender detection,
which is also a reasonable accuracy. CNN analysis with time
and frequency domain features is also in line with the accu-
racy we get using ML algorithms (95.55% accuracy with the
FSDD dataset and 75.17%).

Spearphone [2] shows the highest 99% accuracy in gender
detection using the motion sensor and loudspeaker of the
smartphone. Considering the fact that ear speakers induced



much lower vibration on the motion sensor, the gender recog-
nition accuracy is almost similar to loudspeakers, which is
an interesting observation. Another work Face-mic [22], use
face vibrations on AR/VR devices and achieves 96.81% ac-
curacy in gender recognition. Compared to this work, we
can say that vibration from ear speakers performs better in
recognizing gender compared to face movements induced
vibration.

Speaker Detection: We evaluated with two different
datasets (FSDD and JL-Corpus dataset). Among them, the
FSDD datasets we used contains 788 utterances with 3 dif-
ferent actors and show 91.24% accuracy using ML classifiers.
The JL-Corpus dataset has 1469 utterances with four actors
and shows the highest 64.60% accuracy in speaker detec-
tion, which is still two times greater than a random guess.
CNN analysis with time and frequency domain features also
shows similar accuracy here (86.07% for the FSDD dataset
and 60.20% for the JL-Corpus dataset).

Using the same handheld scenario, spearphone [2]
achieved 99% accuracy for one device in classifying ten
speakers. On the other hand, we achieve, at best 91.24% ac-
curacy in classifying three speakers. Although loudspeaker
performance is better than ear speakers in this case, the
observed accuracy reveals the potential vulnerability of iden-
tifying speaker-specific information from ear speakers just
using built-in zero permission motion sensors. It also shows
slightly lower but still good accuracy compared to face
movement-induced vibration (Face-Mic [22]).

Speech Detection: To evaluate speech detection, we have
used the digit dataset FSDD, where three actors utter ten
different digits. We evaluate the time and frequency domain
features with classical ML algorithms, which show the high-
est 56.42% accuracy. As there are ten different classes here,
the accuracy still exhibits five times greater accuracy than
a random guess, which implies that vibration due to the
ear speaker induced a reasonable amount of distinguishable
impact on accelerometer data.

Previous works also show lower accuracy in speech detec-
tion compared to gender and speaker detection. Spearphone
[2]. shows 80% accuracy in recognizing digits. In work, mm-
Spy [5], which uses an external receiver to sense vibration
from the ear speaker, can achieve 83% accuracy at 1 ft dis-
tance and 47.99% accuracy at 6 ft distance. Compared to a
practical attack scenario (4-6 ft of distance from the phone),
our result is promising in detecting speech digit data.

Other Performance Evaluation Metrics: We list down
TP-rate, FP-rate, Precision, and Recall of our analysis using
classical machine learning algorithm in Table 5 and Table 6.

TP Rate (True Positive Rate) indicates the rate of correctly
classified elements. FP Rate (False Positive Rate) shows the
rate of incorrectly classified elements for a particular class.
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Table 6: Detection performance of ML algorithm with
time/frequency domain features for OnePlus 9 device.

Detection| Classifier | Data set TP FP Precision| Recall
Rate Rate
Random emo-DB 88.7% 11.8% 88.7% 88.7%
Forest JL-Corpus 78.6% 21.7% 78.8% 78.6%
Gender Random emo-DB 84.7% 15.4% 84.7% 84.7%
Subspace JL-Corpus 79.4% 21.0% 79.8% 79.4%
Decision emo-DB 84.7% 16.7% 84.8% 84.7%
Table JL-Corpus 77.7% 22.5% 77.7% 77.7%
Random FSDD 87.8% 5.8% 87.9% 87.8%
Forest JL-Corpus 61.5% 13.2% 61.1% 61.5%
Random FSDD 88.7% 5.2% 89.1% 88.7%
Speaker
Subspace JL-Corpus 55.7% 15.5% 55.5% 55.7%
Decision FSDD 88.2% 5.4% 88.8% 88.2%
Table JL-Corpus 59.9% 13.7% 59.6% 59.9%
Random FSDD 41.6% 6.8% 41.6% 41.6%
Speech Forest
Random FSDD 39.0% 7.2% 39.1% 39.0%
Subspace
Decision FSDD 33.3% 8.0% 33.6% 33.3%
Table

FP Rate (False Positive Rate) shows the rate of incorrectly
classified elements for a particular class. Precision indicates
the proportion of correctly classified elements and all classi-
fied elements for a particular class. On the other hand, recall
suggests the proportion of correctly classified elements and
all the elements present in the class.

6 DISCUSSION AND FUTURE WORK

6.1 General Discussion

Sensor Rate Limit: To protect potentially sensitive infor-
mation about users, if the app targets Android 12 (API level
31) or higher, the system has a limit on the refresh rate of
data from certain motion sensors and position sensors. This
data includes values recorded by the device’s accelerometer.
However, we performed gender classification by utilizing the
emo-DB dataset and accomplished 90.97% accuracy at a 200
Hz sampling rate, which is still a high reasonable accuracy. In
this case, the restriction for the sensor rate does not impact
much on the eavesdropping threat.

Band-pass Filter for Human Movement: Currently, we
are collecting all the data in one go. However, if we place
a high-pass filter, the filter would still severely wipe out
speech properties. For the ear speaker case, even if we placed
a 1 Hz high pass filter, it reduces all speech properties. We
conducted another test where we checked the accuracy when
the phone was placed on a phone holder clamp, and no
movement like the human hand gesture was involved but
held in a handheld position. We achieved 97.3% for gender
classification accuracy with the emo-DB dataset in the clamp
testing. The results imply that human movement does not
play any significant role in that. Thus, we do not remove any
speech property by placing a high pass filter.



6.2 Limitation

Although recent smartphones use larger and more powerful
ear speakers, they still reduce the volume at a reasonable
level to ensure the comfort of the users during a phone con-
versation. As a result, they cannot generate a significant
impact on raw accelerometer data. For this reason, our word
region detection algorithm cannot detect a high percent-
age of the word uttered (it can detect 45% - 80% of words
or speech in total). However, our result indicates that it is
sufficient for the adversary to reasonably detect significant
speech features (e.g., gender, speaker’s identity, speech).

Impacts on the accelerometer due to the vibration of mo-
tion sensors are highly dependent upon the distance between
the ear speaker and the motion sensor. It depends on the
design of the smartphone’s motherboard, which varies from
manufacturer to manufacturer and even varies from model
to model of the same manufacturer. So, our observed accu-
racy is not constant and can show slightly different results
in terms of accuracy.

The data collected from the accelerometer can be noisy
due to the hand and body movement of the user. However,
as discussed in the previous subsection, even if we place 1
Hz high pass filter, it removes important speech features due
to a very low impact on accelerometers by ear speakers. As
such, removing low-frequency noises, in this case, is a chal-
lenge. However, we conducted another experiment where we
emulated the handheld scenario with the phone attached to
a clamp where there was no body-induced vibration present.
We got 97.3% accuracy compared to 98.6% accuracy in our
result, which implies there is a very low impact of noises in
determining the accuracy.

6.3 Countermeasures

One of the potential countermeasures is to change the per-
mission model of motion sensors so that third-party apps
cannot record sensor data without the permission of users.
Recently, Android has restricted sensor data collection with-
out permission [9] for sampling rates beyond 200 Hz. How-
ever, this does not completely prevent silent eavesdropping
using motion sensors. As discussed in the previous subsec-
tion, we have done another experiment on Gender detection
where we collected all data at 200 Hz sampling rate instead
of the default sampling rate (e.g., 420 Hz for OnePlus 7T and
520 Hz for OnePlus 9). We got 90.97% accuracy in gender
detection compared to 98.6% accuracy we observed with the
default sampling rate for OnePlus 7T phone. As such, this
countermeasure cannot fully prevent the user from silent
eavesdropping.

Smartphone manufacturers should be more careful about
designing larger and more powerful ear speaker volume con-
trol. They should maintain the same sound pressure during
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phone conversation as previous generation phones ear speak-
ers. Moreover, they should place the motion sensors in the
proper position relative to the ear speaker so that the phone
speaker’s vibration impact can be minimized.

6.4 Future Works

Our work opens immense research opportunities on eaves-
dropping possibilities on ear speakers using smartphones’
built-in sensors. As the ear speaker has very little impact on
accelerometer data, it is always a challenge to effectively ex-
tract all word regions from it. Researchers can solve the chal-
lenge by proposing more efficient algorithms that increase
detection rates. They also have the opportunity to design
machine learning or deep learning techniques to achieve
more accuracy in speech information extraction in general.

This research primarily focuses on speech recognition
and some speech feature (e.g., speaker’s identity, gender)
eavesdropping from the ear speaker-induced vibration in
an accelerometer. Researchers can work on other speech
features (e.g., language) extraction from motion sensor data.
They also have the opportunity to work on potential pre-
ventive and mitigating measures for eavesdropping from ear
speakers.

7 CONCLUSION

This work focused on the unexplored area of eavesdropping
possibility using smartphone ear speakers, especially with
the device equipped with multiple powerful speakers that
are used as ear speakers. We investigate the reverberation ef-
fect of ear speakers on a built-in accelerometer by extracting
time-frequency domain features and spectrograms. We eval-
uate them using classical machine learning algorithms and
our developed convolutional neural network (CNN) models.
We found up to 98.6% accuracy on gender detection, up to
92.6% accuracy on speaker detection, and up to 56.42% ac-
curacy on speech detection, which proves the presence of
distinguishing speech features in the accelerometer data that
the adversaries can leverage for eavesdropping. Our findings
also open the opportunity for researchers to explore recently
popular powerful ear speakers’ potential risk factors.
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